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Corrigendum

Invariant Randers metrics on homogeneous Riemannian manifolds
Shaoqiang Deng and Zixin Hou 2004 J. Phys. A: Math. Gen. 37 4353–60

In our paper we studied invariant Randers metrics on homogeneous Riemannian manifolds.
There are some errors in the paper. Now we will correct these errors and also give some
additional results.

The main point is that the Randers metrics constructed in theorem 2.2 need not necessarily
be of Berwald type. For this an additional condition is needed. Now we give the correct version
of this theorem

Theorem 2.2. Let ã be an invariant Riemannian metric on G/H . Let m be the orthogonal
complement of h in g with respect to the inner product induced on g by ã. Then there exists
a bijection between the set of all invariant Randers metrics on G/H with the underlying
Riemannian metric ã and the set

V1 = {X ∈ m | Ad(h)X = X, 〈X,X〉 < 1,∀h ∈ H }.
Moreover, for X ∈ V1, the corresponding Randers metric is of Berwald type if and only if X
satisfies

〈[Y,X]m, Z〉 + 〈Y, [Z,X]m〉 + 〈[Z, Y ]m, X〉 = 0, for any Y,Z ∈ m, (∗)

where Ym denotes the projection of Y to m corresponding to (2.1). Furthermore, if G/H is
not flat and 0 �= X ∈ V1, then the corresponding Randers metric is neither Riemannian nor
locally Minkowskian.

Proof. We only need to prove that X ∈ V1 defines a Berwaldian metric if and only if X satisfies
(∗). By theorem 11.5.1 of (Bao et al 2000 An introduction to Riemann–Finsler Geometry
(Berlin: Springer)), the Randers metric is of Berwald type if and only if X̃ is parallel with
respect to ã, i.e. , if and only if

ã(∇Ỹ X̃, Z̃〉 = 0,

for any vector fields Ỹ , Z̃ on G/H . Since ã is G-invariant, this holds if and only if

〈∇Y X̃, Z〉 = 0, ∀Y,Z ∈ m.

By the formula for the Levi-Civita connection of an invariant Riemannian metric on a
homogeneous manifold [1] (p 201), this is equivalent to the fact that X satisfies (∗). �

Since not all the invariant Randers metrics on homogeneous manifolds are of Berwald
type, the formula for geodesics and flag curvature is not correct. We now give a correct
version. Note that if the Randers metric is not of the Berwald type, then the connection is not
the same as that of the underlying Riemannian metric and the flag curvature is generally very
difficult to compute. Even if the Randers metric is of Berwald type, the connection is very
complicated. So in the following, we assume that the Riemannian metric is naturally reductive
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with respect to the decomposition (2.1), i.e.,

ã(X, [Z, Y ]m) + ã([Z,X]m, Y ) = 0, ∀X, Y,Z ∈ m.

Theorem 3.1. Let (G/H, ã) be a naturally reductive homogeneous Riemannian manifold and
X ∈ V1 satisfying (∗). Let F be the corresponding Randers metric on G/H . Then we have
the following:

(i) The geodesics of F through the origin o = eH are

γY : t �→ exp tY · o (Y ∈ m).

(ii) Let Y be a nonzero vector in m and P be a plane in m containing Y. Then the flag curvature
of the flag (P, Y ) in To(G/H) is given by

K(P, Y ) = gl

(
1
4 [[U, l]m, l]m + [[U, l]h, l], U

)
,

where l = Y√
gY (Y,Y )

, U is a vector in P such that U, l is an orthonormal basis of P with
respect to gl .

(iii) In particular, if (G/H, ã) is a Riemannian symmetric manifold, then

K(P, Y ) = gl([[U, l], l], U).

Proof. The formula for geodesics and the curvature tensor of a naturally reductive
homogeneous Riemannian manifold is given in [1] (p 202), from this the formula can be
deduced directly. If the underlying Riemannian metric is symmetric, then it is naturally
reductive and we have

[h, h] ⊂ h, [h,m] ⊂ m, [m,m] ⊂ h.

From this (iii) follows. �

Remark. It is possible to give an explicit formula for gl(·, ·). But the result is very complicated
and we will not give it here.
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